Jumat, 17 Desember 2010

MEDAN MAGNET

Medan magnet, dalam ilmu Fisika, adalah suatu medan yang dibentuk dengan menggerakan muatan listrik (arus listrik) yang menyebabkan munculnya gaya di muatan listrik yang bergerak lainnya. (Putaran mekanika kuantum dari satu partikel membentuk medan magnet dan putaran itu dipengaruhi oleh dirinya sendiri seperti arus listrik; inilah yang menyebabkan medan magnet dari ferromagnet "permanen"). Sebuah medan magnet adalah medan vektor: yaitu berhubungan dengan setiap titik dalam ruang vektor yang dapat berubah menurut waktu. Arah dari medan ini adalah seimbang dengan arah jarum kompas yang diletakkan di dalam medan tersebut.

Sifat

Hasil kerja Maxwell telah banyak menyatukan listrik statis dengan kemagnetan, yang menghasilkan sekumpulan empat persamaan mengenai kedua medan tersebut. Namun, berdasarkan rumus Maxwell, masih terdapat dua medan yang berbeda yang menjelaskan gejala yang berbeda. Einsteinlah yang berhasil menunjukkannya dengan relativitas khusus, bahwa medan listrik dan medan magnet adalah dua aspek dari hal yang sama (tensor tingkat 2), dan seorang pengamat bisa merasakan gaya magnet di mana seorang pengamat bergerak hanya merasakan gaya elektrostatik. Jadi, dengan menggunakan relativitas khusus, gaya magnet adalah wujud gaya elektrostatik dari muatan listrik yang bergerak, dan bisa diprakirakan dari pengetahuan tentang gaya elektrostatik dan gerakan muatan tersebut (relatif terhadap seorang pengamat).

-----------------------------------------------------------------------------------------------------

KEMAGNETAN ( MAGNETOSTATIKA )

Benda yang dapat menarik besi disebut MAGNET.
Macam-macam bentuk magnet, antara lain :
magnet batang magnet ladam magnet jarum




Magnet dapat diperoleh dengan cara buatan.
Jika baja di gosok dengan sebuah magnet, dan cara menggosoknya dalam arah yang tetap, maka baja itu akan menjadi magnet.







Baja atau besi dapat pula dimagneti oleh arus listrik.
Baja atau besi itu dimasukkan ke dalam kumpara n kawat, kemudian ke dalam kumparan kawat dialiri arus listrik yang searah. Ujung-ujung sebuah magnet disebut Kutub Magnet. Garis yang menghubungkan kutub-kutub magnet disebut sumbu magnet dan garis tegak lurus sumbu magne t serta membagi dua sebuah magnet disebut garis sumbu.





Sebuah magnet batang digantung pada titik beratnya. Sesudah keadaan setimbang tercapai, ternyata kutub-kutub batang magnet itu menghadap ke Utara dan Selatan.
Kutub magnet yang menghadap ke utara di sebut kutub Utara.
Kutub magnet yang menghadap ke Selatan disebut kutub Selatan.
Hal serupa dapat kita jumpai pada magnet jarum yang dapat berputar pada sumbu tegak ( jarum deklinasi ).
Kutub Utara jarum magnet deklinasi yang seimbang didekati kutub Utara magnet batang, ternyata kutub Utara magnet jarum bertolak. Bila yang didekatkan adalah kutub selatan magnet batang, kutub utara magnet jarum tertarik.








Kesimpulan : Kutub-kutub yang sejenis tolak-menolak dan kutub-kutub yang tidak sejenis tarik-menarik
Jika kita gantungkan beberapa paku pada ujung-ujung sebuah magnet batang ternyata jumlah paku yang dapat melekat di kedua kutub magnet sama banyak. Makin ke tengah, makin berkurang jumlah paku yang dapat melekat.
Kesimpulan : Kekuatan kutub sebuah magnet sama besarnya semakin ke tengah kekuatannya makin berkurang.


HUKUM COULOMB.

Definisi : Besarnya gaya tolak-menolak atau gaya tarik menarik antara kutub-kutub magnet, sebanding dengan kuat kutubnya masing-masing dan berbanding terbalik dengan kwadrat jaraknya.








F = gaya tarik menarik/gaya tolak menolak dalam newton.
R = jarak dalam meter.

PENGERTIAN MEDAN MAGNET.

Me dan magnet adalah ruangan di sekitar kutub magnet, yang gaya tarik/tolaknya masih dirasakan oleh magnet lain.

Kuat Medan ( H ) = ITENSITY.
Kuat medan magnet di suatu titik di dalam medan magnet ialah besar gaya pada suatu satuan kuat kutub di titik itu di dalam medan magnet m adalah kuat kutub yang menimbulkan medan magnet dalam Ampere-meter. R jarak dari kutub magnet sampai titik yang bersangkutan dalam meter.

Garis Gaya.
Garis gaya adalah : Lintasan kutub Utara dalam medan magnet atau garis yang bentuknya demikian hingga kuat medan di tiap titik dinyatakan oleh garis singgungnya.
Sejalan dengan faham ini, garis-garis gaya keluar dari kutub-kutub dan masuk ke dalam kutub Selatan. Untuk membuat pola garis-garis gaya dapat dengan jalan menaburkan serbuk besi disekitar sebuah magnet.
Gambar pola garis-garis gaya.







Rapat Garis-Garis Gaya ( FLUX DENSITY ) = B
Definisi : Jumlah garis gaya tiap satuan luas yang tegak lurus kuat medan.
clip_image022

Kuat medan magnet di suatu titik sebanding dengan rapat garis-garis gaya dan berbanding terbalik dengan permeabilitasnya.
clip_image024
clip_image026
B = rapat garis-garis gaya.
clip_image011[4] = Permeabilitas zat itu.
H = Kuat medan magnet.
catatan : rapat garis-garis gaya menyatakan kebesaran induksi magnetik.
Medan magnet yang rapat garis-garis gayanya sama disebut : medan magnet serba sama ( homogen )

Diamagnetik Dan Para Magnetik.
Sehubungan dengan sifat-sifat kemagnetan benda dibedakan atas Diamagnetik dan Para magnetik.
Benda magnetik : bila ditempatkan dalam med an magnet yang tidak homogen, ujung-ujung benda itu mengalami gaya tolak sehingga benda akan mengambil posisi yang tegak lurus pada kuat medan. Benda-benda yang demikian mempunyai nilai permeabilitas relatif lebih kecil dari satu. Contoh : Bismuth, tembaga, emas, antimon, kaca flinta.
Benda paramagnetik : bila ditempatkan dalam medan magnet yang tidak homogen, akan mengambil posisi sejajar dengan arah kuat medan. Benda-benda yang demikian mempunyai permeabilitas relatif lebih besar dari pada satu. Contoh : Aluminium, platina, oksigen, sulfat tembaga dan banyak lagi garam-garam logam adalah zat paramagnetik.
Benda feromagnetik : Benda-benda yang mempunyai effek magnet yang sangat besar, sangat kuat ditarik oleh magnet dan mempunyai permeabilitas relatif sampai beberapa ribu. Contoh : Besi, baja, nikel, cobalt dan campuran logam tertentu ( almico )



MEDAN MAGNET DI SEKITAR ARUS LISTRIK.
Percobaan OERSTED
Di atas jarum kompas yang seimbang dibentangkan seutas kawat, sehingga kawat itu sejajar dengan jarum kompas. jika kedalam kaewat dialiri arus listrik, ternyata jarum kompas berkisar dari keseimbangannya.
Kesimpulan : Disekitar arus listrik ada medan magnet





Cara menentukan arah perkisaran jarum.
a. Bila arus listrik yang berada anatara telapak tangan kanan dan jarum magnet mengalir dengan arah dari pergelangan tangan menuju ujung-ujung jari, kutub utara jarum berkisar ke arah ibu jari.
b. Bila arus listrik arahnya dari pergelangan tangan kanan menuju ibu jari, arah melingkarnya jari tangan menyatakan perkisaran kutub Utara.
Pola garis-garis gaya di sekitar arus lurus.
Pada sebidang karton datar ditembuskan sepotong kawat tegak lurus, di atas karbon ditaburkan serbuk besi menempatkan diri berupa lingkaran-lingkaran yang titik pusatnya pada titik tembus kawat.







Kesimpulan : Garis-garis gaya di sekitar arus lurus berupa lingkaran-lingkaran yang berpusatkan pada arus tersebut.
Cara menentukan arah medan magnet
Bila arah dari pergelangan tangan menuju ibu jari, arah melingkar jari tangan menyatakan arah medan magnet.

HUKUM BIOT SAVART.

Definisi : Besar induksi magnetik di satu titik di sekitar elemen arus, sebanding dengan panjang elemen arus, besar kuat arus, sinus sudut yang diapit arah arus dengan jaraknya sampai titik tersebut dan berbanding terbalik dengan kwadrat jaraknya.





INDUKSI MAGNETIK


Induksi magnetik di sekitar arus lurus.

clip_image046


Toroida
Sebuah solenoide yanfg dilengkungkan sehingga sumbunya membentuk lingkaran di sebut Toroida.
Bila keliling sumbu toroida 1 dan lilitannya berdekatan, maka induksi magnetik pada sumbu toroida.
clip_image081

Kesimpulan :

• Adanya medan magnet di dalam ruang dapat ditunjukkan
dengan mengamati pengaruh yang ditimbulkan.

  1. Bila di dalam ruang tersebut ditempatkan benda magnetik maka benda tersebut mengalami gaya.
  2. Bila di ruang terdapat partikel/benda bermuatan, maka benda tersebut mengalami gaya.

• Medan magnet merupakan besaran vektor,
adapun kuat/lemahnya medan tersebut ditunjukkan oleh intensitas
magnet
(H).

• Efek medan magnet disebut induksi magnetik (B),
juga merupakan besaran vektor.

Hubungan antara H dan B :
B = mo H
dengan :
B = induksi magnetik, satuan dalam SI = Weber/m2 atau Tesla
H = intensitas magnet
mo = permeabilitas = 4p x 10-7 Wb/A.m (udara)

GAYA LORENTZ

Gaya Lorentz adalah gaya (dalam bidang fisika) yang ditimbulkan oleh muatan listrik yang bergerak atau oleh arus listrik yang berada dalam suatu medan magnet, B. Arah gaya ini akan mengikuti arah maju skrup yang diputar dari vektor arah gerak muatan listrik (v) ke arah medan magnet, B, seperti yang terlihat dalam rumus berikut:
\mathbf{F} = q (\mathbf{v} \times \mathbf{B})
di mana
F adalah gaya (dalam satuan/unit newton)
B adalah medan magnet (dalam unit tesla)
q adalah muatan listrik (dalam satuan coulomb)
v adalah arah kecepatan muatan (dalam unit meter per detik)
× adalah perkalian silang dari operasi vektor.
Untuk gaya Lorentz yang ditimbulkan oleh arus listrik, I, dalam suatu medan magnet (B), rumusnya akan terlihat sebagai berikut (lihat arah gaya dalam kaidah tangan kanan):
\mathbf{F} = \mathbf{L} I \times \mathbf{B} \,
di mana
F = gaya yang diukur dalam unit satuan newton
I = arus listrik dalam ampere
B = medan magnet dalam satuan tesla
\times = perkalian silang vektor, dan
L = panjang kawat listrik yang dialiri listrik dalam satuan meter.

-------------------------------------------------------------------------------------------------
Telah kita bahas bahwa apabila kawat dialiri arus listrik maka akan menimbulkan medan magnet disekitarnya (baca bab medan magnet disekitar kawat berarus).
Bila penghantar berarus di letakkan di dalam medan magnet , maka pada penghantar akan timbul gaya. Gaya ini disebut dengan gaya lorentz. Jadi gaya lorentz adalah gaya yang dialami kawat berarus listrik di dalam medan magnet. Sehingga dapat disimpulkan bahwa gaya Lorentz dapat timbul dengan syarat sebagai berikut :
(a) ada kawat pengahantar yang dialiri arus
(b) penghantar berada di dalam medan magnet
perhatikan gambar di bawah ini










Bagaimana gaya lorentz berfungsi, maka lakukan percobaan dengan mengamati bentuk medan magnet atau garis gaya magnet selama percobaan.
Bila pengamatan dilakukan dengan benar maka akan diperoleh :
(a) Makin besar arus listrik yang mengalir, makin besar pula gaya yang bekerja dan makin cepat batang penghantar bergulir.
(b) Bila polaritas sumbu dirubah, maka penghantar akan bergerak dalam arah yang berlawanan dengan gerak sebelumnya.


MENENTUKAN ARAH GAYA LORENTZ

Arah gaya lorentz dapat ditentukan dengan aturan tangan kanan. Jari-jari tangan kanan diatur sedemikian rupa, sehingga Ibu jari tegak lurus terjadap telunjuk dan tegak lurus juga terhadap jari tengah. Bila arah medan magnet (B) diwakili oleh telunjuk dan arah arus listrik (I) diwakili oleh ibu jari, maka arah gaya lorentz (F) di tunjukkan oleh jari tengah.
perhatikan gambar berikut :






















Gaya lorentz pada penghantar bergantung pada faktor sebagai berikut :
(1) kuat medan magnet (B)
(2) besar arus listrik (I)
(3) panjang penghantar

sehingga dapat dirumuskan
F = B.I.L
keterangan :
F adalah gaya lorentz (N)
B adalah kuat medan magnet (Tesla)
I adalah kuat arus listrik (A)
L adalah panjang penghantar (m)
----------------------------------------------------------------------------------------------

Pada percobaan oersted telah dibuktikan pengaruh arus listrik terhadap kutub magnet, bagaimana pengaruh kutub magnet terhadap arus listrik akan dibuktikan dari percobaan berikut :
Seutas kawat PQ ditempatkan diantara kutub-kutub magnet ladam kedalam kawat dialirkan arus listrik ternyata kawat melengkung kekiri.
Gejala ini menunjukkan bahwa medan magnet mengerjakan gaya pada arus listrik, disebut Gaya Lorentz. Vektor gaya Lorentz tegak lurus pada I dan B. Arah gaya Lorentz dapat ditentukan dengan tangan kanan. Bila arah melingkar jari-jari tangan kanan sesuai dengan putaran dari I ke B, maka arah ibu jari menyatakan arah gaya Lorents.
Besar Gaya Lorentz.
Hasil-hasil yang diperoleh dari percobaan menyatakan bahwa besar gaya Lorentz dapat dirumuskan sebagai :
F = B I clip_image086sin a
F = gaya Lorentz.
B = induksi magnetik medan magnet.
I = kuat arus.
clip_image086[1]= panjang kawat dalam medan magnet.
a = sudut yang diapit I dan B.
Satuan Kuat Arus.
Kedalam kawat P dan Q yang sejajar dialirkan arus listrik. Bila arah arus dalam kedua kawat sama, kawat itu saling menarik.
Penjelasannya sebagai berikut :
Dilihat dari atas arus listrik P menuju kita digambarkan sebagai arus listrik dalam kawat P menimbulkan medan magnet. Medan magnet ini mengerjakan gaya Lorentz pada arus Q arahnya seperti dinyatakan anak panah F. Dengan cara yang sama dapat dijelaskan gaya Lorentz yang bekerja pada arus listrik dalam kawat P.

Kesimpulan :
Arus listrik yang sejajar dan searah tarik-menarik dan yang berlawanan arah tolak- menolak.
Bila jarak kawat P dan Q adalah a, maka besar induksi magnetik arus P pada jarak a :
clip_image089
Besar gaya Lorentz pada arus dalam kawat Q
clip_image091
Besar gaya Lorentz tiap satuan panjang
clip_image093
clip_image095
clip_image097
F tiap satuan panjang dalam N/m.
Ip dan IQ dalam Ampere dan a dalam meter.
Bila kuat arus dikedua kawat sama besarnya, maka :
clip_image099
Untuk I = 1 Ampere dan a = 1 m maka F = 2.10-7 N/m
Kesimpulan :
1 Ampere adalah kuat arus dalam kawat sejajar yang jaraknya 1 meter dan menimbulkan gaya Lorentz sebesar 2.10-7 N tiap meter.
Gerak Partikel Bermuatan Dalam Medan Listrik.
Pertambahan energi kinetik.

Kamis, 16 Desember 2010

GGL INDUKSI

Pada bab sebelumnya, kamu sudah mengetahui bahwa kelistrikan dapat menghasilkan kemagnetan. Menurutmu, dapatkah kemagnetan menimbulkan kelistrikan? Kemagnetan dan kelistrikan merupakan dua gejala alam yang prosesnya dapat dibolak-balik. Ketika H.C. Oersted membuktikan bahwa di sekitar kawat berarus listrik terdapat medan magnet (artinya listrik menimbulkan magnet), para ilmuwan mulai berpikir keterkaitan antara kelistrikan dan kemagnetan. Tahun 1821 Michael Faraday membuktikan bahwa perubahan medan magnet dapat menimbulkan arus listrik (artinya magnet menimbulkan listrik) melalui eksperimen yang sangat sederhana. Sebuah magnet yang digerakkan masuk dan keluar pada kumparan dapat menghasilkan arus listrik pada kumparan itu. Galvanometer merupakan alat yang dapat digunakan untuk mengetahui ada tidaknya arus listrik yang mengalir. Ketika sebuah magnet yang digerakkan masuk dan keluar pada kumparan (seperti kegiatan di atas), jarum galvanometer menyimpang ke kanan dan ke kiri. Bergeraknya jarum galvanometer menunjukkan bahwa magnet yang digerakkan keluar dan masuk pada kumparan menimbulkan arus listrik. Arus listrik bisa terjadi jika pada ujung-ujung kumparan terdapat GGL (gaya gerak listrik). GGL yang terjadi di ujung-ujung kumparan dinamakan GGL induksi. Arus listrik hanya timbul pada saat magnet bergerak. Jika magnet diam di dalam kumparan, di ujung kumparan tidak terjadi arus listrik.

1. Penyebab Terjadinya GGL Induksi

Ketika kutub utara magnet batang digerakkan masuk ke dalam kumparan, jumlah garis gaya-gaya magnet yang terdapat di dalam kumparan bertambah banyak. Bertambahnya jumlah garis- garis gaya ini menimbulkan GGL induksi pada ujung-ujung kumparan. GGL induksi yang ditimbulkan menyebabkan arus listrik mengalir menggerakkan jarum galvanometer. Arah arus induksi dapat ditentukan dengan cara memerhatikan arah medan magnet yang ditimbulkannya. Pada saat magnet masuk, garis gaya dalam kumparan bertambah. Akibatnya medan magnet hasil arus induksi bersifat mengurangi garis gaya itu. Dengan demikian, ujung kumparan itu merupakan kutub utara sehingga arah arus induksi seperti yang ditunjukkan Gambar 12.1.a (ingat kembali cara menentukan kutub-kutub solenoida).








Ketika kutub utara magnet batang digerakkan keluar dari dalam kumparan, jumlah garis-garis gaya magnet yang terdapat di dalam kumparan berkurang. Berkurangnya jumlah garis-garis gaya ini juga menimbulkan GGL induksi pada ujung-ujung kumparan. GGL induksi yang ditimbulkan menyebabkan arus listrik mengalir dan menggerakkan jarum galvanometer. Sama halnya ketika magnet batang masuk ke kumparan. pada saat magnet keluar garis gaya dalam kumparan berkurang. Akibatnya medan magnet hasil arus induksi bersifat menambah garis gaya itu. Dengan demikian, ujung, kumparan itu merupakan kutub selatan, sehingga arah arus induksi seperti yang ditunjukkan Gambar 12.1.b. Ketika kutub utara magnet batang diam di dalam kumparan, jumlah garis-garis gaya magnet di dalam kumparan tidak terjadi perubahan (tetap). Karena jumlah garis-garis gaya tetap, maka pada ujung-ujung kumparan tidak terjadi GGL induksi. Akibatnya, tidak terjadi arus listrik dan jarum galvanometer tidak bergerak. Jadi, GGL induksi dapat terjadi pada kedua ujung kumparan jika di dalam kumparan terjadi perubahan jumlah garis-garis gaya magnet (fluks magnetik). GGL yang timbul akibat adanya perubahan jumlah garis-garis gaya magnet dalam kumparan disebut GGL induksi. Arus listrik yang ditimbulkan GGL induksi disebut arus induksi. Peristiwa timbulnya GGL induksi dan arus induksi akibat adanya perubahan jumlah garis-garis gaya magnet disebut induksi elektromagnetik. Coba sebutkan bagaimana cara memperlakukan magnet dan kumparan agar timbul GGL induksi?
2. Faktor yang Memengaruhi Besar GGL Induksi Sebenarnya besar kecil GGL induksi dapat dilihat pada besar kecilnya penyimpangan sudut jarum galvanometer. Jika sudut penyimpangan jarum galvanometer besar, GGL induksi dan arus induksi yang dihasilkan besar. Bagaimanakah cara memperbesar GGL induksi? Ada tiga faktor yang memengaruhi GGL induksi, yaitu : a. kecepatan gerakan magnet atau kecepatan perubahan jumlah garis-garis gaya magnet (fluks magnetik), b. jumlah lilitan, c. medan magnet



B. PENERAPAN INDUKSI ELEKTROMAGNETIK

Pada induksi elektromagnetik terjadi perubahan bentuk energi gerak menjadi energi listrik. Induksi elektromagnetik digunakan pada pembangkit energi listrik. Pembangkit energi listrik yang menerapkan induksi elektromagnetik adalah generator dan dinamo. Di dalam generator dan dinamo terdapat kumparan dan magnet. Kumparan atau magnet yang berputar menyebabkan terjadinya perubahan jumlah garis-garis gaya magnet dalam kumparan. Perubahan tersebut menyebabkan terjadinya GGL induksi pada kumparan. Energi mekanik yang diberikan generator dan dinamo diubah ke dalam bentuk energi gerak rotasi. Hal itu menyebabkan GGL induksi dihasilkan secara terus-menerus dengan pola yang berulang secara periodik
1. Generator
Generator dibedakan menjadi dua, yaitu generator arus searah (DC) dan generator arus bolak-balik (AC). Baik generator AC dan generator DC memutar kumparan di dalam medan magnet tetap. Generator AC sering disebut alternator. Arus listrik yang dihasilkan berupa arus bolak-balik. Ciri generator AC menggunakan cincin ganda. Generator arus DC, arus yang dihasilkan berupa arus searah. Ciri generator DC menggunakan cincin belah (komutator). Jadi, generator AC dapat diubah menjadi generator DC dengan cara mengganti cincin ganda dengan sebuah komutator. Sebuah generator AC kumparan berputar di antara kutub- kutub yang tak sejenis dari dua magnet yang saling berhadapan. Kedua kutub magnet akan menimbulkan medan magnet. Kedua ujung kumparan dihubungkan dengan sikat karbon yang terdapat pada setiap cincin. Kumparan merupakan bagian generator yang berputar (bergerak) disebut rotor. Magnet tetap merupakan bagian generator yang tidak bergerak disebut stator. Bagaimanakah generator bekerja? Ketika kumparan sejajar dengan arah medan magnet (membentuk sudut 0 derajat), belum terjadi arus listrik dan tidak terjadi GGL induksi (perhatikan Gambar 12.2). Pada saat kumparan berputar perlahan-lahan, arus dan GGL beranjak naik sampai kumparan membentuk sudut 90 derajat. Saat itu posisi kumparan tegak lurus dengan arah medan magnet. Pada kedudukan ini kuat arus dan GGL induksi menunjukkan nilai maksimum. Selanjutnya, putaran kumparan terus berputar, arus dan GGL makin berkurang. Ketika kumparan mem bentuk sudut 180 derajat kedudukan kumparan sejajar dengan arah medan magnet, maka GGL induksi dan arus induksi menjadi nol.











Putaran kumparan berikutnya arus dan tegangan mulai naik lagi dengan arah yang berlawanan. Pada saat membentuk sudut 270 derajat, terjadi lagi kumparan berarus tegak lurus dengan arah medan magnet. Pada kedudukan kuat arus dan GGL induksi menunjukkan nilai maksimum lagi, namun arahnya berbeda. Putaran kumparan selanjutnya, arus dan tegangan turun perlahanlahan hingga mencapai nol dan kumparan kembali ke posisi semula hingga memb entuk sudut 360 derajat.

2. Dinamo

Dinamo dibedakan menjadi dua yaitu, dinamo arus searah (DC) dan dinamo arus bolak-balik (AC). Prinsip kerja dinamo sama dengan generator yaitu memutar kumparan di dalam medan magnet atau memutar magnet di dalam kumparan. Bagian dinamo yang berputar disebut rotor. Bagian dinamo yang tidak bergerak disebut strator












Perbedaan antara dinamo DC dengan dinamo AC terletak pada cincin yang digunakan. Pada dinamo arus searah menggunakan satu cincin yang dibelah menjadi dua yang disebut cincin belah (komutator). Cincin ini memungkinkan arus listrik yang dihasilkan pada rangkaian luar Dinamo berupa arus searah walaupun di dalam dinamo sendiri menghasilkan arus bolak-balik. Adapun, pada dinamo arus bolak-balik menggunakan cincin ganda (dua cincin). Alat pembangkit listrik arus bolak balik yang paling sederhana adalah dinamo sepeda. Tenaga yang digunakan untuk memutar rotor adalah roda sepeda. Jika roda berputar,










kumparan atau magnet ikut berputar. Akibatnya, timbul GGL induksi pada ujung-ujung kumparan dan arus listrik mengalir. Makin cepat gerakan roda sepeda, makin cepat magnet atau kumparan berputar. Makin besar pula GGL induksi dan arus listrik yang dihasilkan. Jika dihubungkan dengan lampu, nyala lampu makin terang. GGL induksi pada dinamo dapat diperbesar dengan cara putaran roda dipercepat, menggunakan magnet yang kuat (besar), jumlah lilitan diperbanyak, dan menggunakan inti besi lunak di dalam kumparan.

C. TRANSFORMATOR

1. Macam-Macam Transformator

Apabila tegangan terminal output lebih besar daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penaik tegangan. Sebaliknya apabila tegangan terminal output lebih kecil daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penurun tegangan. Dengan demikian, transformator (trafo) dibedakan menjadi dua, yaitu trafo step up dan trafo step down.

Trafo step up adalah transformator yang berfungsi untuk menaikkan tegangan
Trafo ini memiliki ciri-ciri:
a. jumlah lilitan primer lebih sedikit daripada jumlah lilitan sekunder,
b. tegangan primer lebih kecil daripada tegangan sekunder,
c. kuat arus primer lebih besar daripada kuat arus sekunder.
Trafo step down adalah transformator yang berfungsi untuk menurunkan tegangan AC. Trafo ini memiliki ciri-ciri:
a. jumlah lilitan primer lebih banyak daripada jumlah lilitan sekunder,
b. tegangan primer lebih besar daripada tegangan sekunder,
c. kuat arus primer lebih kecil daripada kuat arus sekunder.

2. Transformator Ideal

Besar tegangan dan kuat arus pada trafo bergantung banyaknya lilitan. Besar tegangan sebanding dengan jumlah lilitan

3. Efisiensi Transformator

Di bagian sebelumnya kamu sudah mempelajari transformator atau trafo yang ideal. Namun, pada kenyataannya trafo tidak pernah ideal. Jika trafo digunakan, selalu timbul energi kalor. Dengan demikian, energi listrik yang masuk pada kumparan primer selalu lebih besar daripada energi yang keluar pada kumparan sekunder. Akibatnya, daya primer lebih besar daripada daya sekunder. Berkurangnya daya dan energi listrik pada sebuah trafo ditentukan oleh besarnya efisiensi trafo.






penggunaan transformator

a. Power supply (catu daya)
Catu daya merupakan alat yang digunakan untuk menghasilkan tegangan AC yang rendah. Catu daya menggunakan trafo step down yang berfungsi untuk menurunkan tegangan 220 V menjadi beberapa tegangan AC yang besarnya antara 2 V sampai 12 V

b. Adaptor (penyearah arus)
Adaptor terdiri atas trafo step down dan rangkaian penyearah arus listrik yang berupa diode. Adaptor
merupakan catu daya yang ditambah dengagb129n penyearah arus. Fungsi penyearah arus adalah mengubah tegangan AC menjadi tegangan DC.

c. Transmisi daya listrik jarak jauh
Pembangkit listrik biasanya dibangun jauh dari permukiman penduduk. Proses pengiriman daya listrik kepada pelanggan listrik (konsumen) yang jaraknya jauh disebut transmisi daya listrik jarak jauh. Untuk menyalurkan energi listrik ke konsumen yang jauh, tegangan yang dihasilkan generator pembangkit listrik perlu dinaikkan mencapai ratusan ribu volt. Untuk itu, diperlukan trafo step up. Tegangan tinggi ditransmisikan melalui kabel jaringan listrik yang panjang menuju konsumen. Sebelum masuk ke rumah-rumah penduduk tegangan diturunkan menggunakan trafo step down hingga menghasilkan 220 V. Transmisi daya listrik jarak jauh dapat dilakukan dengan menggunakan tegangan besar dan arus yang kecil. Dengan cara itu akan diperoleh beberapa keuntungan, yaitu energi yang hilang dalam perjalanan dapat dikurangi dan kawat penghantar yang diperlukan dapat lebih kecil serta harganya lebih murah.



Kamis, 16 September 2010

GELOMBANG

Gelombang adalah usikan yang merambat atau getaran yang merambat. Bentuk ideal dari suatu gelombang akan mengikuti gerak sinusoide. Selain radiasi elektromagnetik, dan mungkin radiasi gravitasional, yang bisa berjalan lewat vakum, gelombang juga terdapat pada medium (yang karena perubahan bentuk dapat menghasilkan gaya memulihkan yang lentur) di mana mereka dapat berjalan dan dapat memindahkan energi dari satu tempat kepada lain tanpa mengakibatkan partikel medium berpindah secara permanen; yaitu tidak ada perpindahan secara masal.

Periode gelombang (T) adalah waktu yang diperlukan oleh gelombang untuk menempuh satu panjang gelombang penuh.
Panjang gelombang (λ) adalah jarak yang ditempuh dalam waktu satu periode (jarak antara A dan C)
Frekuensi gelombang adalah banyaknya gelombang yang terjadi tiap satuan waktu.
Cepat rambat gelombang (v) adalah jarak yang ditempuh gelombang tiap satuan waktu.

v = λ.f
Dituliskan dengan persamaan : v = , dalam hal ini jika t diambil nilai ekstrem yaitu periode (T), maka S dapat digantikan dengan λ (panjang gelombang). Sehingga persamaan di atas dapat ditulis menjadi :

v = , dan karena f = , maka persamaan tersebut juga dapat ditulis sbb:
Keterangn : T = periode ( s )
f = frekuensi ( Hz )
λ = panjang gelombang ( m )
v = cepat rambat gelombang ( m/s )

..Macam-macam gelombang..
Gelombang dibagi menjadi 2 macam :
A. Gelombang mekanik
Gelombang mekanik adalah gelombang yang perambatannya memerlukan perantara.
Gelombang air , gelombang tali termasuk dalam gelombang mekanik.
Gelombang mekanik terdiri dari dua jenis, yakni gelombang transversal (transverse wave) dan gelombang longitudinal (longitudinal wave).

- gelombang transversal











Gelombang transversal adalah gelombang yang arah rambatannya tegak lurus dengan arah rambatannya. Satu gelombang terdiri atas satu lembah dan satu bukit.


- gelombang longitudinal











Gelombang logitudinal adalah gelombang yang merambat dalam arah yang berimpitan dengan arah getaran pada tiap bagian yang ada. Gelombang yang terjadi berupa rapatan dan renggangan. Contoh gelombang longitudinal seperti slingki / pegas yang ditarik ke samping lalu dilepas.


B. Gelombang elektromagnetik
Gelombang elektromagnetik adalah gelombang yang tidak memerlukan perantara.
Keberadaan gelombang elektromagnetik didasarkan pada hipotesis Maxwell (James Clark Maxwell) “Jika medan magnet dapat menimbulkan medan listrik, maka sebaliknya, perubahan medan listrik dapat menyebabkan medan magnet.”

Gelombang Stationer
gelombang stationer adalah gelombang yang memiliki amplitudo yang berubah – ubah antara nol sampai nilai maksimum tertentu.
Gelombang stasioner dibagi menjadi dua, yaitu gelombang stasioner akibat pemantulan pada ujung terikat dan gelombang stasioner pada ujung bebas.












gambar diatas adalah gambar gelombang stationer pada ujung terikat














sedangkan gambar diatas ini adalah gambar gelombang stationer pada ujung bebas.

Seutas tali yang panjangnya l m kita ikat ujungnya pada satu tiang sementara ujung lainnya kita biarkan, setela itu kita goyang ujung yang bebas itu keatas dan kebawah berulang – ulang. Saat tali di gerakkan maka gelombang akan merambat dari ujung yang bebas menuju ujung yang terikat, gelombang ini disebut sebagai gelombang dating. Ketika gelombang dating tiba diujung yang terikat maka gelombang ini akan dipantulkan sehingga terjadi interferensi gelombang.
Untuk menghitung waktu yang diperlukan gelombang untuk merambat dari titik 0 ke titik P adalah (l- x)/v . sementara itu waktu yang diperlukan gelombang untuk merambat dari titik 0 menuju titik P setelah gelombang mengalami pemantulan adalah(l+x)/v , kita dapat mengambil persamaan dari gelombang dating dan gelombang pantul sebagai berikut:


y1= A sin 2π/T (t- (l-x)/v) untuk gelombang datang,

y2= A sin 2π/T (t- (l+x)/v+ 1800) untuk gelombang pantul

sehingga untuk hasil interferensi gelombang datang dan gelombang pantul di titik P yang berjarak x dari ujung terikat adalah sebagai berikut:


y = y1+ y2
=A sin⁡ 2π (t/T- (l-x)/λ)+ A sin⁡2π(t/T- (1+x)/λ+ 1800 )
Dengan menggunakan aturan sinus maka penyederhanaan rumus menjadi:
sin⁡ A + sin⁡ B = 2 sin⁡ 1/2 (A+B) - cos⁡1/2 (A-B)


Menjadi:
y= 2 A sin⁡ (2π x/λ ) cos ⁡2π (t/T - l/λ)
y= 2 A sin⁡ kx cos⁡ (2π/T t - 2πl/λ)

Rumus interferensi

y= 2 A sin⁡ kx cos⁡ (ωt- 2πl/λ)

Keterangan :
A = amplitude gelombang datang atau pantul (m)
k = 2π/λ
ω = 2π/T (rad/s)
l = panjang tali (m)
x = letak titik terjadinya interferensi dari ujung terikat (m)
λ = panjang gelombang (m)
t = waktu sesaat (s)
Ap = besar amplitude gelombang stasioner (AP)
Ap = 2 A sin kx
Jika kita perhatikan gambar pemantulan gelombang diatas , gelombang yang terbentuk adalah gelombang transversal yang memiliki bagian – bagian diantaranya perut dan simpul gelombang. Perut gelombang terjadi saat amplitudonya maksimum sedangkan simpul gelombang terjadi saat amplitudonya minimum. Dengan demikian kita akan dapat mencari letak titik yang merupakan tempat terjadinya perut atau simpul gelombang.

Tempat simpul (S) dari ujung pemantulan
S=0,1/2 λ,λ,3/2 λ,2λ,dan seterusnya
=n (1/2 λ),dengan n=0,1,2,3,….

Tempat perut (P) dari ujung pemantulan
P= 1/4 λ,3/4 λ,5/4 λ,7/4 λ,dan seterusnya
=(2n-1)[1/4 λ],dengan n=1,2,3,….

Gelombang Berjalan

Amplitudo pada tali yang digetarkan terus menerus akan selalu tetap, oleh karenanya gelombang yang memiliki amplitudo yang tetap setiap saat disebut gelombang berjalan.
Misalkan seutas tali kita getarkan ke atas dan ke bawah berulang-ulang seperti pada Gambar disamping ini. Titik P berjarak x dart titik 0 (sumber getar), Ketika titik 0 bergetar maka getaran tersebut merambat hingga ke titik P,Waktu yang diperlukan oleh gelombang untuk merambat dari titik o ke titik P adalah x / v dengan demikian bila titik 0 telah bergetar selama t detik maka titik p telah bergetar selama tP dengan


tp= t- x/v


Berdasarkan uraian diatas maka akan didapatkan persamaan simpangan gelombang, sebagai berikut:

y=A sin⁡ 2π/T t


Sabtu, 19 Juni 2010

TERMODINAMIKA

A. Usaha dan hukum I termodinamika
Termodinamika merupakan ilmu yang mempelajari hubungan kalor dan bentuk lain dari energi. Kalor bergerak secara alami dari materi yang lebih panas ke materi yang lebih dingin .Contohnya lemari es ,panas secara terus menerus diambil dari ruangan dalam yang dingin dan dibuang ke udara luar yang lebih panas ,itu sebabnya bagian samping dan belakang biasanya hangat .
Dalam termodinamika dikenal dengan istilah sistem dan lingkungan .Sistem merupakan benda yang akan diteliti dan lingkungan merupakan semua benda yang ada dialam .


Energi dalam
Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik.

Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai

untuk gas monoatomik




untuk gas diatomik



Dimana perubahan energi dalam adalah perubahan energi dalam gas, n adalah jumlah mol gas, R adalah konstanta umum gas (R = 8,31 J mol−1 K−1, dan perubahan suhu adalah perubahan suhu gas (dalam kelvin).


Hukum I Termodinamika

Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi.

Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai

perubahan kalor (Q)=perubahan usaha(W)+ perubahan energi dalam(U)

Dimana Q adalah kalor, W adalah usaha, dan adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.

Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam .


Proses Isotermik

Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam ( perubahan energi dalam = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).

Proses isotermik dapat digambarkan dalam grafik pV di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai














Proses Isokhorik

Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (perubahan kalor= perubahan energi dalam ), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor

gas pada volume konstan QV.

QV = perubahan energi dalam



Proses Isobarik

Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = p.perubahan volume). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku

pers05Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan

QV =perubahan energi dalam

Dari sini usaha gas dapat dinyatakan sebagai

W = QpQV

Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).














Proses Adiabatik

Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (-perubahan usaha = perubahan energi dalam)

Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai








B. Siklus termodinamika dan hukum II termodinamika


1. Siklus Carnot









Berdasarkan sifatnya siklus dibagi menjadi 2 ,yaitu siklus reversible (dapat balik) dan siklus irreversible (tidak dapat balik). Siklus carnot termasuk siklus reversible.
- pada proses A-B terjadi ekspansi isotermik
- pada proses B-C terjadi ekspansi adiabatik
- pada proses C-D terjadi pemampatan isotermik
- pada proses D-A terjadi pemampatan adiabatik

Mesin kalor dan mesin pendingin menggunakan siklus energi kalor secara spontan dan tidak spontan. Jika mesin kalor kalor menyerap energi \bf{Q_1} dari benda bersuhu tinggi ~ sebab \bf secara \ spontan \ kalor \ melepaskan \ panas \ atau \ energinya \ pada \ suhu \ tinggi dan benda yang bersuhu rendah akan secara spontan menyerap energi tersebut. Benda bersuhu rendah dinyatakan mempunyai energi sebesar \bf{Q_2}.

Berdasar prinsip mesin pemanas tersebut, maka

perhitungan efisiensi mesin panas menjadi :

\eta = \frac{Q_1-Q_2}{Q_1} x 100%


Efisiensi mesin pendingin Carnot adalah sebagai berikut :

K=Q2/Q1-Q2

karena \bf{Q_1} selalu lebih besar nilainya dari \bf{Q_2} maka hasil pembagian fungsi tersebut selalu lebih dari angka 1.


2. Siklus Otto

Siklus mesin bakar atau biasa disebut siklus Otto ..













- pada proses 1-2 terjadi pemampatan adiabatik
- pada proses 2-3 terjadi isokhorik
- pada proses 3-4 terjadi ekspansi adiabatik
- pada proses 4-1 terjadi iskhorik

Usaha yang dilakukan sistem pada siklus Otto adalah :
W= Q1 - Q2

Efisiensi siklus Otto adalah :
efisiensi= 1 - Q2/Q1



3. Siklus Diesel




















- pada proses 1-3 terjadi pemampatan adiabatik
- pada proses 3-3a langkah daya pertama ekspansi isobarik
- pada proses 3a-4 terjadi ekspansi adiabatik
- pada proses 4-1 terjadi penurunan suhu


4. Siklus Rankine

Siklus mesin uap disebut juga siklus Rankine.