Selasa, 08 Desember 2009

Gerak Harmonis Sederhana

GERAK HARMONIS SEDERHANA

Gerak Harmonis Sederhana adalah gerak bolak - balik suatu benda melewati titik keseimbangan. Contohnya, bandul jam yang bergerak ke kiri dan ke kanan, penggaris yang salah satu ujungnya dijepit di meja dan ujung lainnya digetarkan.
Dalam Gerak Harmonis Sederhana, benda terbagi menjadi tiga bagian. Dimana tiap benda yang bergerak secara harmonis akan memiliki simpangan, kecepatan ,dan percepatan. Ketiganya nanti akan dibahas secara lebih lanjut di halaman berikutnya. Termasuk pula akan dibahas mengenai sudut fase, fase, dan beda fase
Selanjutnya, akan dibahas pula mengenai gaya pegas yang erat hubungannya dengan gerak haromnis sederhana Dalam hal pegas ini, yang akan dibahas adalah Elastisitas dan Hukum Hooke. Selain itu, modulus elastisitas atau yang sering disebut juga dengan sebutan Modulus Young, yang artinya perbandingan antara tegangan dan regangan, juga akan dibahas secara lanjut di halaman berikutnya. Tegangan dan regangan itu sendiri juga akan dibahas scara satu persatu.
Hal lain yang akan dibahas adalah Gerakan benda di bawah pengaruh gaya pegas. Bila sebuah benda yang digantungkan pada pegas ditarik dan dilepas, pegas akan bergetar. Nah, percepatan getarnya itu dapat dihitung dan itulah yang menjadi pembahasan nanti


# Simpangan, Kecepatan, dan Percepatan GHS

1. Simpangan GHS

Untuk menghitung besarnya simpangan pada gerak harmonis sederhana digunakan rumus:
Simpangan atau Simpangan
Bila besarnya sudut awal (Θ 0) adalah 0 maka persamaan simpangannya menjadi:
Simpangan Sudut Awal 0
dengan:
y = simpangan (m)
A = amplitudo atau simpangan maksimum (m)
t = waktu getar (s)
w = kecepatan sudut (rad/s)

Simpangan akan bernilai maksimum (ymaks) jika sin wt = 1 sehingga persamaannya menjadi:
Simpangan Maksimal

2. Kecepatan GHS

Besarnya kecepatan gerak harmonis dapat dicari dengan persamaan:
Kecepatan
Besarnya kecepatan akan mencapai nilai maksimun bila besarnya cos wt = 1, sehingga persamaannya menjadi:
Kecepatan Maksimal

3. Percepatan GHS

Besarnya percepatan pada gerak harmonis sederhana dapat dihitung dengan rumus:
Percepatan atau Percepatan
Dan besarnya percepatan akan mencapai nilai maksimal apabila besarnya sin wt = 1, sehingga:
Percepatan Maksimal
Besarnya percepatan bernilai negatif menunjukkan arah percepatan a berlawanan dengan arah perpindahan y (y adalah perpindahan dari titik keseimbangan)


Sudut Fase, Fase, dan Beda Fase GHS

Berdasarkan dari persamaan simpangan:
Simpangan
bila diturunkan akan menjadi,
Sudut Fase
Faktor Θ disebut sudut fase, yaitu posisi sudut selama benda bergerak harmonis.

Fase atau tingkat getar adalah sudut fase dibagi dengan sudut tempuh selama satu putaran penuh. Sehingga besarnya fase dapat dihitung dari persamaan:
Fase
Nilai fase biasanya hanya diambil bilangan pecahannya saja Misalkannya saja besarnya fase getaran adalah 1/4, 11/4, 21/4 maka besarnya fase cukup disebut 1/4 saja karena posisi partikel yang bergetar untuk ketiga fase getar tersebut sama. Bilangan bulat di depan pecahan, menunjukkan banyaknya getaran penuh yang terlewati.

Pembahasan tentang fase dibagi menjadi dua, yaitu:
1. Beda fase getaran suatu titik dengan selang waktu t= t1 dan t= t2
Persamaan yang dipakai untuk menghitung besarnya beda fase dengan selang waktu dari t1 sampai t2 adalah:
Beda Fase dengan selang waktu
2. Beda fase dua getaran pada waktu sama
Kita juga dapat menghitung beda fase dua getaran pada waktu yang sama. Misalkan dua getaran masing - masing dengan periode T1 dan T2 maka beda fase keduanya setelah bergetar selama t sekon dapat dicari dengan persamaan:
Beda Fase dengan waktu yang bersamaan
Dua kedudukan tersebut akan dikatan sefase bila nilai beda fase merupakan bilangan cacah (tanpa pecahan ataupun desimal). Sebaliknya kedudukan akan dikatakan berlawanan fase apabila nilai beda fase berupa bilangan cacah+1/2(dengan pecahan ataupun desimal).

# Superposisi Dua Simpangan Gerak Harmonis yang Segaris

Jika ada dua persamaan simpangan yang dialami oleh suatu partikel pada saat yang sama, maka simpangan akibat kedua getaran dapat dicaari dengan dua cara, yaitu secara grafis dan secara maematis. Berikut adalah pembahasan mengenai kedua cara tersebut.

1. Secara Grafis

Berikut adalah gambar Superposisi dua gerak harmonis sederhana,
Grafik Superposisi

2. Secara Matematis

Dalam perhitungan secara matematis dua gerak harmonis memiliki simpangannya masing - masing. Untuk mencari simpangan superposisinya maka kedua simpangan itu dijumlahkan (y = y1 + y2) sehingga didapatkan persamaan sebagai berikut:
Superposisi secara Matematis

# Penurunan Rumus Periode (T) dan Frekuensi (f)

Dalam pembahasan suba bab ini, kita akan membahasa mengenai Periode (T) dan frekuensi (f). Dalam bahasan ini, akan membahas pula mengenai gaya pemulih. Karena itu, pembahasannya akan dibatasi hanya sampai pada pegas dan ayunan sederhana.

1. Pegas

Dalam pegas untuk perhitungan Periodenya digunakan rumus:
Periode Pegas
sedangkan besarnya frekuensi berbanding terbalik dengan periodenya ( f = 1/T), sehingga didapatkan rumus frekuensi sebagai berikut:
Frekuensi Pegas
dengan,
m = massa beban (kg)
k = konstanta pegas (N/m)
Sedangkan bila konstanta pegas belum diketahui, konstatanya dapat dihitung dengan persamaan:
Konstanta Pegas
dengan,
g = gaya gravitasi (9,8 N/kg atau 10 N/kg)
x = perpanjangan pegas (m)
Bila pegas yang dipakai lebih dari satu, maka untuk mencari konstantanya harus menggunakan konstanta total. Untuk menghitung konstanta total tergantung dari rangkaian pegas itu sendiri. Bila beberapa pegas dirangkai secara seri, maka untuk mencari konstanta totalnya mengunakan rumus:
Konstanta Pegas Total Seri
Sedangkan untuk pegas yang dirangkai paralel mengunakan rumus:
Konstanta Pegas Total Paralel

2. Ayunan Sederhana

Sedangkan dalam ayunan sederhana untuk mencari besarnya Periode digunakan rumus:
Periode Ayunan
Kemudian dalam mencari frekuensi, karena nilai frekuensi berbanding terbalik dengan periode maka didapatkan rumus:
Frekuensi Ayunan
dengan,
l = panjang tali (m)
g = gaya gravitasi bumi (m/s2)

2 komentar:

  1. kl mnghitung gravitasi pd ayunan fisis jk yg dktahui panjang batang, pusat ayunan dan simpangan kt mnggunakn rumus yg bgaimn ya?
    please!

    BalasHapus
    Balasan
    1. mungkin pakai sin cos tan + phytagoras kaliiiii

      Hapus